Spectrometer Group Buy, and see the Arducorder at CES!

Just a quick update, and my apologies for being slow to update — I think I speak for all the Hackaday prize finalists when I say that the push to finish was absolutely exhausting! In the mean time I’ve been very busy catching up on writing two papers in the lab, visiting with family over the holidays, taking care of a sick kitty, and trying to find a few hours of rest.

DSC_0148-1024

Arducorder at CES

The good folks at Hamamatsu have borrowed the Arducorder this week to help demonstrate their beautiful C12666MA micro-spectrometer in action. If you happen to be at CES, be sure to drop by the Hamamatsu booth to check it out!

DSC_0050-1024

Micro-spectrometer Group Buy

The C12666MA micro-spectrometer is a beautiful instrument, but it’s also not the easiest to get ahold of in small quantities. The folks over at Group Buy (who helped get the FLIR Lepton thermal imager out into the community) have a group buy for the micro-spectrometer at the fantastic price of $180, or about $50 off the regular single-quantity pricing. This is a really fantastic deal, and if you’ve been assembling your own Arducorder (or would like to experiment with the C12666MA micro-spectrometer), it’s a great opportunity. As of writing there are only 4 days left to get in on this group by, so you’ll likely want to act quickly.

DSC_0257-1024

Power Switch!

Every designer has aspects of a project that they do well, and places where they could use a little improvement. Power circuits are where I usually need improvement, and I tend to overengineer them for efficiency so much that occasionally they’re simply too complex to work on the first revision. The Arducorder has a very good and high-efficiency buck/boost power circuit, but the case design was missing an important element — the acrylic slider that covers the power switch, and lets you easily turn the unit on! Free yourself from the bounds of having to carry around a tiny screwdriver or paperclip, and cut out this power switch slider :).

Just a quick update — thanks for reading!

Arducorder Mini Update: Sensor Board Mega-Update, and Capacitive Touch Wheel

Hi folks — two exciting updates to the Arducorder Mini project! The first is a mega-update on the sensors, including this video testing out the magnetic field sensor by detecting the magnetic fields from the transformer in a soldering station!

The second update (fresh from this weekend!) shows the capacitive touch wheel working, with a test visualization I wrote. Looks beautiful!

The full updates can be seen on the Hackaday.io project logs. Thanks for reading, and stay tuned!

Arducorder Update: Video and Sensor Board Assembly

Definitely making serious progress! Here’s a 2 minute video, the first for the Hackaday Prize, which describes the concept and initial prototype:

And a new project update describing the assembly of the first sensor boards can be found here, where all of the project logs can be found on the Hackaday.io build log for the project.

7069221405492908853

The Hackaday Prize and the Arducorder!

hackadayprize

I think it’d make a great story to say that the fellow who designed real (open source!) science tricorders made it into space, and so I’ve started the next chapter in the project — entering the hackaday prize to win a trip to space!

There’s something about a near-term fixed deadline that helps turn research projects and prototypes into complete and functional devices. The hackaday prize prototype has to be working in just over a month, and complete in a few months, with regular milestones on the way. This challenges you to be fast, efficient, make your mistakes cheaply, and make interesting but safe design choices to ensure that the design is completed on time. I confess that I’ve been excited about exploring the space of open source science tricorders, and so I’ve incorporated a lot of hot-off-the-press components into the designs that in many cases don’t yet have a lot of support or examples to work from. This makes for interesting and high-risk experiments, but it doesn’t lead to the end-game that I get so many e-mails about — actually having an inexpensive science tricorder-like device in your hands. Hopefully this will help change that.

I’ve redesigned an open, inexpensive, modular, mini version of the Arducorder — this time with more processing power, and transitioning back to a bright, beautiful OLED display. Part of the requirements for the hackaday prize are documenting your project, and I’ve taken this further to document the entire process from creative sketches, concept, and industrial design, to taking those designs and making them real. The first four project logs can be found here. This means much more frequent updates in the weeks and months to come, and I’ll post the links to new project logs here on the blog. The first logs are:

Step 1: An Introduction and Background
models

Step 2: Concept and Industrial Design
concept

Step 3: Schematic and Board Layout Part 1
motherboardboard_norouting

Step 3: Schematic and Board Layout Part 2
motherboard_withrouting_graphic

With more to come!

How can you help?
The hackaday prize is judged on several criteria, including community voting. There are three ways that folks interested in the project can help:

  1. Vote: There are two mechanisms for voting, and both require an account on Hackaday IO, but it only takes a moment to sign up. Once you’ve signed up, please visit the project on Hackaday IO and select “Give the project a ‘skull’ symbol” to show your support. This helps show your support for the project, and show it to more folks who visit Hackaday IO. buttons
  2. More Voting: The second set of voting helps determine the interest in each project concept entered into the hackaday prize. It takes a minute or two to complete this step, and as a bonus you get to quickly become familiar with some of the other great projects in the competition!
    vote
  3. Write a kind note: The kind words of encouragement that folks send are genuinely helpful, and are very appreciated. If you like the project and have a moment, please feel free to write a note in the comments (either here or on the Hackaday IO project site). I read them all, and apologize that there sometimes isn’t enough time in the day to reply to them all while still making progress.

Thanks for reading! With the first set of boards being made as we speak, it should be an exciting few months! Stay tuned!

Source Release — Open Source CT Alpha

openct-source

I’m very happy to announce the first release of the Open Source Computed Tomography (CT) scanner project. This is an early alpha release, and contains all of the source at the projects current stage, including the laser cutter design files for the machine structure, EAGLE source files, and the sample Arduino sketch.

The source is available for download here [zip], and is also available on GitHub. For potential contributors, the TODO file also includes near term project goals at a variety of skill levels, from adding end-stops and designing the official Arduino shield, to designing parallel detectors that decrease scan time, and developing a new source/detector pair for different wavelengths of interest.

I’m excited to see what folks do with this project, both now and as it matures. If you build one, want to contribute to the project, or encounter any issues, please send me a note.

In other news, the Bay Area Maker Faire is coming up in a short two months. With a good amount of progress on the Open Source CT Scanner, I’m going to switch gears for a while back to the Mark 5 Arducorder — I’d love to have the firmware and basic functionality working and demonstrable by then.

Open Source CT in MAKE Magazine

makemagazine_ctscanner400

Very exciting news — the Open Source Desktop CT Scanner is featured in this month’s MAKE Magazine Homebrew Section. I’ve been a great fan of MAKE for years and presented the Science Tricorders at their first Hardware Innovation Workshop, and so it’s very exciting to see the project in this issue.

Source Files: There’s been a lot of interest in having the source files for the alpha version of the scanner, and so I’ll endeavor to have these up within a week or so. I’m in the process of collecting and packaging the source, as well as moving everything to GitHub (including TODO lists) so that it’s much easier for folks to contribute.

I think that the best thing for an open source project is to bootstrap an initial community of users that can grow into a community of contributors, and so I’d like to cut out a few sets of the laser cut parts to send to one or two folks who are interested in building (and ideally contributing) to the project. If you’re interested, please send along a note with your background and how you’d like to contribute, to peter at tricorderproject dot org.

thanks!